分类 | 高教类- 其他类 |
---|---|
ISBN | 978-7-5618-5762-5 |
开放标志 | |
尺寸 | 185mm×260mm |
字数 | 536千 |
出版社 | 天津大学出版社 |
作者 | 林伟豪 著 |
印次 | 第一次 |
版次 | 第一版 |
定价 | 55.00 |
印张 | 16.5 |
包装 | 平装 |
出版日期 | 2017-01-01 |
印刷日期 | 2017-01-01 |
PV | |
Base_PV | |
页数 | 250页 |
购买地址 |
前言
目前研究船舶螺旋桨结构与性能的书籍有很多,而对船舶螺旋桨射流以及船舶螺旋桨射流对海底冲刷的研究则很少。本书系统地介绍了船舶螺旋桨射流的速度分布,并利用了计算流体力学方法和试验方法对其进行研究。
本书的主要内容包括:螺旋桨射流的基础理论、数值模拟方法的介绍与应用、激光多普勒测速法的试验研究、螺旋桨射流揣流强度的讨论。本书介绍了轴向动量理论、平射流理论等关于螺旋桨旋转射流的基础理论。读者可以通过图片结合理论方程对螺旋桨射流有直观的理解。
本书阐述了如何利用计算流体力学方法中的standard k-e 和standard k-w 等揣流模型对
尾流进行模拟,预测径向速度,切向速度,轴向速度和揣流强度。读者可以了解如何建立螺旋桨几何模型、生成网格的方法,并学会了如何预测螺旋桨尾流的流场。试验利用激光多普勒测速法,对射流速度进行测量,并对实验布置、数据采集、误差来源进行详细的描述,与数值模拟的结论互为补充。读者可以从中学习如何设置激光多普勒测速仪,并深入了解螺旋桨射流的物理现象和理论模型的改进。本书适合从事海洋工程、港口工程、流体力学、水力学相关的工程师、研究员、教师、研究生、高年级本科生。
作者感谢英国贝尔法斯特女王大学对科研的资助, Hamill 博士、Robinson 博士和Raghunathan教授的在作者博士期间的细心指导。本书还获得国家自然科学基金创新群体项目(项目编号51621092 ) 、水利工程仿真与安全国家重点实验室、高新船舶与深海开发装备协同创新中心、教育部海洋能源利用与节能重点实验室、马来亚大学海洋与地球科学研究所的资助。
Contents
Chapter 1 Introduction …….................…..................…..................………. 1
1. 1 Characteristics of the Ship’s Propeller Jet.............................................1
1. 2 Applications of the Ship’s Propeller Jet ……………………………………………… 2
1. 3 Scope of the Book …………………………………………………………………… 3
Chapter 2 Equations used to Predict the Velocity Components · · · · · · · · · · · · · · · · · · 5
2. 1 Concept of Propeller Jet ……………………………………………………………… 5
2. 1. 1 Plain Water Jet …………………………………………………………………… 5
2. 1. 2 Axial Momentum The。可………·……………………………………………….. 6
2. 2 Limitations of Plain Water Jet and Axial Momentum Theory ………………………… 8
2. 3 Semi-empirical Equations for a Propeller Jet ………………………………………… 9
2. 3. 1 Efflux Velocity …………………………….........……………………………… 9
2. 3. 2 Contraction of the Propeller Jet ………………………………………………… 10
2.3.3 Len♂h of the Zone of Flow Establishment ……………………………………… 11
2. 3. 4 Zone of Flow Establishment …………………………………………………… 11
2. 3. 5 Zone of Established Flow ……………………………………………………… 14
2. 3. 6 RotationaVtangential Component of Velocity …………………………………… 16
2. 3. 7 Radial Component of Velocity ………………………………………………… 17
Chapter 3 Numercial Simulations …......................….....................…… 22
3. 1 Selection of CFD Software …………………………………………………………… 2
3. 2 Selection of Hardware ………………………………………………………………… 24
3 . 3 Propeller ……………………………………………………………………………… 25
3 . 3 . 1 Propeller Configuration ………………………………………………………… 25
3. 3. 2 Basic Characteristic of Propeller ……………………………………………… 26
3. 3. 3 Propellers in Current Studies …………………………………………………… 26
3. 4 Geometry Creation …………………………………………………………………… 28
3. 5 Grid Generation ……………………………………………………………………… 30
3. 5. 1 Grid Generation Using Unstructured Grid ……………………………………… 31
3. 5. 2 Grid Generation Using Structured Grid ………………………………………… 32
3. 6 Domain Sensitivity …………........……………………….........…………………· 34
3. 6. 1 Cuboidal Domain or Cylindrical Domain ……………………………………… 34
3. 6. 2 Domain Independence for Structured Mesh …………………………………… 35
3. 6. 3 Domain Independence for Unstructured Mesh ………………………………… 36
3. 7 Grid Sensitivity ……………………………………………………………………… 36
3. 7. 1 Grid Independence of a Structured Mesh ……………………………………… 37
3. 7. 2 Grid Independence of an Unstructured Mesh …………………………………… 37
3. 8 Propeller 3 D Scanning ……………………………………………………………… 38
3. 9 Boundary Conditions and Continuum Specification ………………………………… 38
3. 10 Governing Equations of CFD ……………………………………………………… 39
3. 11 Turbulence Model …………………………………………………………………… 41
3. 11. 1 Standard k-e Turbulence Model ……………………………………………… 41
3. 11. 2 RNG k-e Turbulence Model ………………………………………………….. 42
3. 11. 3 Realizable k-e Turbulence Model …………………………………………… 43
3 . 11. 4 Standard ιw Turbulence Model ……………………………………………· 43
3 . 11 . 5 Shear Stress Transport ( SST) k-w Model …….................................... 44
3 . 11. 6 Spalart-Allmaras Model ……………………………………………………… 44
3. 11. 7 Reynolds Stress Model ( RSM)………………………………………………… 44
3. 12 Computational Demand ……………………………………………………………… 45
1 日Mesh Movement …………………………………………………………………… 45
3. 14 Discretisation Scheme ……………………………………………………………… 47
3. 15 Near-wall Treatment ………………………………………………………………… 4
3. 16 Solution Algorithm ………………………………………………………………… 48
3. 17 Convergence ………………………………………………………………………… 49
3. 18 Concluding Comments ……………………………………………………………… 49
Chapter 4 Investigation of CFD Models …........................….................. 88
4. 1 Notation ……………………………………………………………………………… 88
4. 2 Geometry Analysis …………………………………………………………………… 88
4. 3 Structured Grid or Unstructured Grid ……………………………………………… 90
4. 4 Modelling the Rotation ……………………………………………………………… 91
4. 5 Turbulence Model …………………………………………………………………… 92
4. 5. 1 Standard k-e Model in the Structured Grid …………………………………… 92
4. 5. 2 RNG k-e Model in the Structured Grid ………………………………………94
4. 5. 3 Realizable k-e Model in the Structured Grid …………………………………… 95
4. 5. 4 Standard k-w Model in the Structured Grid …………………………………… 96
4. 5. 5 SST k-w Model in the Structured Grid ………………………………………… 97
4. 5. 6 Spalart-Allmaras Model in the Structured Grid ………………………………… 97
4. 5. 7 Reynolds Stresses Model ( RSM) in the Structured Grid ……………………… 98
4. 6 Discretisation Scheme ………………………………………………………………… 98
4. 6. 1 Discretisation Scheme Using Structured Grid …………………………………… 98
4. 6. 2 Discretisation Scheme Using Unstructured Grid ………………………………… 99
4. 6. 3 Numerical Instability due to Second Order Scheme …………………………… 101
4. 7 Proposed Method …………………………………………………………………… 101
4. 8 Concluding Comments ………………………………·…………………………….. 102
Chapter 5 Application of CFD Models ….......…..... ...…………...............… 154
5. 1 Grid Generation …………………………………………………………………… 154
5. 2 Grid Independence …………………………………··……………………………· 154
5. 3 Decay of the Maximum Axial Velocity ……………………………………………… 155
5. 4 Axial Velocity Distribution ………………………………………………………… 155
5. 4. 1 Axial Velocity Distribution at Efflux Plane …………………………………… 155
5. 4. 2 Extent of the Zone of Flow Establishment …………………………………… 155
5. 4. 3 Extent of the Zone of Established Flow ……………………………………… 156
5. 5 Decay of the Maximum Tangential Velocity ………………………………………… 156
5. 6 Extent of the Tangential Component of Velocity …………………………………… 156
5. 7 Decay of the Maximum Radial Velocity …………………………………………… 157
5. 8 Extent of the Radial Component of Velocity ……………………………………… 157
5. 9 Concluding Comments ……………………………………………………………… 157
Chapter 6 LDA Setup ………………………………………………………........…· 168
6. 1 Experimental Set-up ………………………………………………………………… 168
6. 1. 1 Propeller Model ……………………………………………………………… 169
6. 1. 2 Scaling of Experimental Model ………………………………………………… 169
6. 2 Data Acquisition …………………………………………………………………… 171
6. 2. 1 Measurement Grid …………………………………………………………… 171
6. 2. 2 Laser Doppler Anemometry ………………………………………………··…· 172
6. 2. 3 Dantec LDA Measurement System …………………………………………… 173
6. 3 Source of Errors …………………………………………………………………… 174
6. 4 Particle Image Velocimetry ………………………………………………………… 175
6. 5 Concluding Comments …………·………………………………………………….. 175
Chapter 7 Experimental Measurement …........….......…..............….......… 187
7. 1 Axial Component of Velocity ……………………………………………………… 187
7. 1. 1 Axisymetric about Rotation Axis ……………………………………………… 188
7. 1. 2 Efflux Velocity ………………………………………………………………… 189
7. 1. 3 Position of the Efflux Velocity ………………………………………………… 189
7. 1. 4 Contraction of the Propeller Jet ……………………………………………… 190
7 .1. 5 Len阱of Zone of Flow Establishment…..........................… 190
7. 1. 6 Decay of the Maximum Axial Velocity within the Zone of Flow Establishment … 191
7. 1. 7 Position of Maximum Velocity from the Rotation Axis within the Zone of Flow Estahlishmen……………………………………………………… 191
7. 1. 8 Extent of the Zone of Flow Establishment …………………........…………· 192
7. 1. 9 Extent of the Zone of Established Flow ……………………………………… 193
7. 2 Tangential Component of Velocity ………………………………………………… 193
7. 2. 1 Decay of Maximum Tangential Velocity ……………………………………… 193
7. 2. 2 Extent of the Tangential Component of Velocity …………………………·….. 194
7. 3 Radial Component of Velocity ……………………………………………………… 195
7. 3. 1 Decay of the Maximum Radial Velocity ……………………………………… 195
7. 3. 2 Extent of the Radial Component of Velocity ………………………………… 195
7. 4 Concluding Comments ……………………………………………………………… 196
Chapter 8 Turbulence Intensity · · · · · · · ·….........………........…........…......... 212
8. 1 Definition of Turbulence Intensity ………………………………………………… 212
8. 1. 1 Definition of Turbulence Intensity from Dantec LDA System ………………… 213
8. 1. 2 Definition of Turbulence Intensity from Fluent ……………………………… 214
8. 1. 3 Reference Velocity for Turbulence Intensity ………........…………………· 215
8. 2 Investigation of LDA’s and CFD’s Outputs Used in Turbulence Intensity Comparison ............ 215
8. 2. 1 Component Turbulent Fluctuation …………………………………………… 216
8. 2. 2 Turbulence Intensity …………………………………………………………· 218
8. 3 Turbulence Intensity within a Ship’s Propeller Jet ………………………………… 219
8. 4 Turbulence Intensity within a Ship’s Propeller Jet Using Standard k-e Turbulence Model..................................... 221
8. 5 Turbulence Intensity within a Ship’s Propeller Jet Using RNG k-e, Realizable k-e,
Standard k-w and SST k-w Models ………………………………………………………… 221
8. 6 Turbulence Intensity within a Ship’s Propeller Jet Using Reynolds Stress Model ( RSM)...........................…223
8. 7 Turbulence Intensity within a Ship’s Propeller Jet Using Spalart-Allmaras Model
…224
8. 8 Concluding Comments ……………………………………………………………… 225
· Chapter 9 Conclusions & Recommendations …….....…...............….......... 241
9. 1 Conclusions ………………………………………………………………………… 241
9. 2 Recommendations for Future Research …………………………………………… 245
References ………………………………………………………………………………… 247