天大出版社内部管理系统
主页
书籍管理
防伪管理
分组管理
图书分组
资源分组
分类管理
新闻管理
资源管理
轮转图片
首页轮转图片
新闻首页图片
新闻栏目图片
图书首页图片
资源首页图片
党建首页图片
首页浮动图片
身份认证
教师身份认证
作者身份认证
申请审核
约稿管理
投稿管理
样书申请
评论审核
问题反馈
注销
后台管理系统
书籍管理
书籍信息
内容编辑
返回
内容
<p> Contents</p><p><br/></p><p>Chapter 1 Introduction …….................…..................…..................………. 1</p><p>1. 1 Characteristics of the Ship’s Propeller Jet.............................................1</p><p>1. 2 Applications of the Ship’s Propeller Jet ……………………………………………… 2</p><p>1. 3 Scope of the Book …………………………………………………………………… 3</p><p>Chapter 2 Equations used to Predict the Velocity Components · · · · · · · · · · · · · · · · · · 5</p><p>2. 1 Concept of Propeller Jet ……………………………………………………………… 5</p><p>2. 1. 1 Plain Water Jet …………………………………………………………………… 5</p><p>2. 1. 2 Axial Momentum The。可………·……………………………………………….. 6</p><p>2. 2 Limitations of Plain Water Jet and Axial Momentum Theory ………………………… 8</p><p>2. 3 Semi-empirical Equations for a Propeller Jet ………………………………………… 9</p><p>2. 3. 1 Efflux Velocity …………………………….........……………………………… 9</p><p>2. 3. 2 Contraction of the Propeller Jet ………………………………………………… 10</p><p>2.3.3 Len♂h of the Zone of Flow Establishment ……………………………………… 11</p><p>2. 3. 4 Zone of Flow Establishment …………………………………………………… 11</p><p>2. 3. 5 Zone of Established Flow ……………………………………………………… 14</p><p>2. 3. 6 RotationaVtangential Component of Velocity …………………………………… 16</p><p>2. 3. 7 Radial Component of Velocity ………………………………………………… 17</p><p>Chapter 3 Numercial Simulations …......................….....................…… 22</p><p>3. 1 Selection of CFD Software …………………………………………………………… 2</p><p>3. 2 Selection of Hardware ………………………………………………………………… 24</p><p>3 . 3 Propeller ……………………………………………………………………………… 25</p><p>3 . 3 . 1 Propeller Configuration ………………………………………………………… 25</p><p>3. 3. 2 Basic Characteristic of Propeller ……………………………………………… 26</p><p>3. 3. 3 Propellers in Current Studies …………………………………………………… 26</p><p>3. 4 Geometry Creation …………………………………………………………………… 28</p><p>3. 5 Grid Generation ……………………………………………………………………… 30</p><p>3. 5. 1 Grid Generation Using Unstructured Grid ……………………………………… 31</p><p>3. 5. 2 Grid Generation Using Structured Grid ………………………………………… 32</p><p>3. 6 Domain Sensitivity …………........……………………….........…………………· 34</p><p>3. 6. 1 Cuboidal Domain or Cylindrical Domain ……………………………………… 34</p><p>3. 6. 2 Domain Independence for Structured Mesh …………………………………… 35</p><p>3. 6. 3 Domain Independence for Unstructured Mesh ………………………………… 36</p><p>3. 7 Grid Sensitivity ……………………………………………………………………… 36</p><p>3. 7. 1 Grid Independence of a Structured Mesh ……………………………………… 37</p><p>3. 7. 2 Grid Independence of an Unstructured Mesh …………………………………… 37</p><p>3. 8 Propeller 3 D Scanning ……………………………………………………………… 38</p><p>3. 9 Boundary Conditions and Continuum Specification ………………………………… 38</p><p>3. 10 Governing Equations of CFD ……………………………………………………… 39</p><p>3. 11 Turbulence Model …………………………………………………………………… 41</p><p>3. 11. 1 Standard k-e Turbulence Model ……………………………………………… 41</p><p>3. 11. 2 RNG k-e Turbulence Model ………………………………………………….. 42</p><p>3. 11. 3 Realizable k-e Turbulence Model …………………………………………… 43</p><p>3 . 11. 4 Standard ιw Turbulence Model ……………………………………………· 43</p><p>3 . 11 . 5 Shear Stress Transport ( SST) k-w Model …….................................... 44</p><p>3 . 11. 6 Spalart-Allmaras Model ……………………………………………………… 44</p><p>3. 11. 7 Reynolds Stress Model ( RSM)………………………………………………… 44</p><p>3. 12 Computational Demand ……………………………………………………………… 45</p><p>1 日Mesh Movement …………………………………………………………………… 45</p><p>3. 14 Discretisation Scheme ……………………………………………………………… 47</p><p>3. 15 Near-wall Treatment ………………………………………………………………… 4</p><p>3. 16 Solution Algorithm ………………………………………………………………… 48</p><p>3. 17 Convergence ………………………………………………………………………… 49</p><p>3. 18 Concluding Comments ……………………………………………………………… 49</p><p>Chapter 4 Investigation of CFD Models …........................….................. 88</p><p>4. 1 Notation ……………………………………………………………………………… 88</p><p>4. 2 Geometry Analysis …………………………………………………………………… 88</p><p>4. 3 Structured Grid or Unstructured Grid ……………………………………………… 90</p><p>4. 4 Modelling the Rotation ……………………………………………………………… 91</p><p>4. 5 Turbulence Model …………………………………………………………………… 92</p><p>4. 5. 1 Standard k-e Model in the Structured Grid …………………………………… 92</p><p>4. 5. 2 RNG k-e Model in the Structured Grid ………………………………………94</p><p>4. 5. 3 Realizable k-e Model in the Structured Grid …………………………………… 95</p><p>4. 5. 4 Standard k-w Model in the Structured Grid …………………………………… 96</p><p>4. 5. 5 SST k-w Model in the Structured Grid ………………………………………… 97</p><p>4. 5. 6 Spalart-Allmaras Model in the Structured Grid ………………………………… 97</p><p>4. 5. 7 Reynolds Stresses Model ( RSM) in the Structured Grid ……………………… 98</p><p>4. 6 Discretisation Scheme ………………………………………………………………… 98</p><p>4. 6. 1 Discretisation Scheme Using Structured Grid …………………………………… 98</p><p>4. 6. 2 Discretisation Scheme Using Unstructured Grid ………………………………… 99</p><p>4. 6. 3 Numerical Instability due to Second Order Scheme …………………………… 101</p><p>4. 7 Proposed Method …………………………………………………………………… 101</p><p>4. 8 Concluding Comments ………………………………·…………………………….. 102</p><p>Chapter 5 Application of CFD Models ….......…..... ...…………...............… 154</p><p>5. 1 Grid Generation …………………………………………………………………… 154</p><p>5. 2 Grid Independence …………………………………··……………………………· 154</p><p>5. 3 Decay of the Maximum Axial Velocity ……………………………………………… 155</p><p>5. 4 Axial Velocity Distribution ………………………………………………………… 155</p><p>5. 4. 1 Axial Velocity Distribution at Efflux Plane …………………………………… 155</p><p>5. 4. 2 Extent of the Zone of Flow Establishment …………………………………… 155</p><p>5. 4. 3 Extent of the Zone of Established Flow ……………………………………… 156</p><p>5. 5 Decay of the Maximum Tangential Velocity ………………………………………… 156</p><p>5. 6 Extent of the Tangential Component of Velocity …………………………………… 156</p><p>5. 7 Decay of the Maximum Radial Velocity …………………………………………… 157</p><p>5. 8 Extent of the Radial Component of Velocity ……………………………………… 157</p><p>5. 9 Concluding Comments ……………………………………………………………… 157</p><p>Chapter 6 LDA Setup ………………………………………………………........…· 168</p><p>6. 1 Experimental Set-up ………………………………………………………………… 168</p><p>6. 1. 1 Propeller Model ……………………………………………………………… 169</p><p>6. 1. 2 Scaling of Experimental Model ………………………………………………… 169</p><p>6. 2 Data Acquisition …………………………………………………………………… 171</p><p>6. 2. 1 Measurement Grid …………………………………………………………… 171</p><p>6. 2. 2 Laser Doppler Anemometry ………………………………………………··…· 172</p><p>6. 2. 3 Dantec LDA Measurement System …………………………………………… 173</p><p>6. 3 Source of Errors …………………………………………………………………… 174</p><p>6. 4 Particle Image Velocimetry ………………………………………………………… 175</p><p>6. 5 Concluding Comments …………·………………………………………………….. 175</p><p>Chapter 7 Experimental Measurement …........….......…..............….......… 187</p><p>7. 1 Axial Component of Velocity ……………………………………………………… 187</p><p>7. 1. 1 Axisymetric about Rotation Axis ……………………………………………… 188</p><p>7. 1. 2 Efflux Velocity ………………………………………………………………… 189</p><p>7. 1. 3 Position of the Efflux Velocity ………………………………………………… 189</p><p>7. 1. 4 Contraction of the Propeller Jet ……………………………………………… 190</p><p>7 .1. 5 Len阱of Zone of Flow Establishment…..........................… 190</p><p>7. 1. 6 Decay of the Maximum Axial Velocity within the Zone of Flow Establishment … 191</p><p>7. 1. 7 Position of Maximum Velocity from the Rotation Axis within the Zone of Flow Estahlishmen……………………………………………………… 191</p><p>7. 1. 8 Extent of the Zone of Flow Establishment …………………........…………· 192</p><p>7. 1. 9 Extent of the Zone of Established Flow ……………………………………… 193</p><p>7. 2 Tangential Component of Velocity ………………………………………………… 193</p><p>7. 2. 1 Decay of Maximum Tangential Velocity ……………………………………… 193</p><p>7. 2. 2 Extent of the Tangential Component of Velocity …………………………·….. 194</p><p>7. 3 Radial Component of Velocity ……………………………………………………… 195</p><p>7. 3. 1 Decay of the Maximum Radial Velocity ……………………………………… 195</p><p>7. 3. 2 Extent of the Radial Component of Velocity ………………………………… 195</p><p>7. 4 Concluding Comments ……………………………………………………………… 196</p><p>Chapter 8 Turbulence Intensity · · · · · · · ·….........………........…........…......... 212</p><p>8. 1 Definition of Turbulence Intensity ………………………………………………… 212</p><p>8. 1. 1 Definition of Turbulence Intensity from Dantec LDA System ………………… 213</p><p>8. 1. 2 Definition of Turbulence Intensity from Fluent ……………………………… 214</p><p>8. 1. 3 Reference Velocity for Turbulence Intensity ………........…………………· 215</p><p>8. 2 Investigation of LDA’s and CFD’s Outputs Used in Turbulence Intensity Comparison ............ 215</p><p>8. 2. 1 Component Turbulent Fluctuation …………………………………………… 216</p><p>8. 2. 2 Turbulence Intensity …………………………………………………………· 218</p><p>8. 3 Turbulence Intensity within a Ship’s Propeller Jet ………………………………… 219</p><p>8. 4 Turbulence Intensity within a Ship’s Propeller Jet Using Standard k-e Turbulence Model..................................... 221</p><p>8. 5 Turbulence Intensity within a Ship’s Propeller Jet Using RNG k-e, Realizable k-e,</p><p>Standard k-w and SST k-w Models ………………………………………………………… 221</p><p>8. 6 Turbulence Intensity within a Ship’s Propeller Jet Using Reynolds Stress Model ( RSM)...........................…223</p><p>8. 7 Turbulence Intensity within a Ship’s Propeller Jet Using Spalart-Allmaras Model</p><p>…224</p><p>8. 8 Concluding Comments ……………………………………………………………… 225</p><p>· Chapter 9 Conclusions & Recommendations …….....…...............….......... 241</p><p>9. 1 Conclusions ………………………………………………………………………… 241</p><p>9. 2 Recommendations for Future Research …………………………………………… 245</p><p>References ………………………………………………………………………………… 247</p><p><br/></p>
Message